

1920AB60

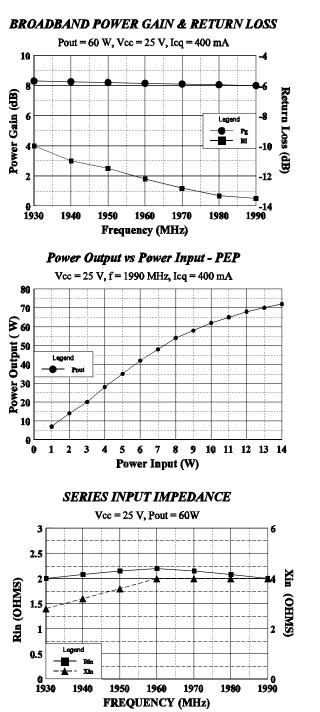
60 Watts PEP, 25 Volts, Class AB Personal 1930 - 1990 MHz

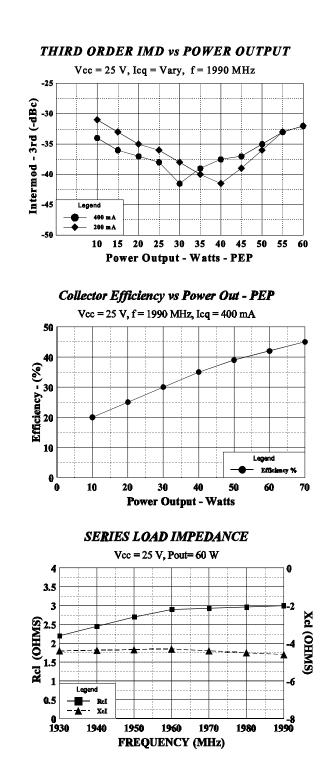
The 1920. Watts of C This trans COMMU two stage and HIGH supreme r	RAL DESCRIPTION AB60 is a COMMON EMITTER tra Class AB, RF PEP output power over istor is specifically designed for LIN INICATIONS BASE STATION am input and single output prematching. I VALUE EMITTER ballasting to pro uggedness	the band 1930-1990 MHz. EAR PERSONAL (PCS) plifier applications. It includes It utilizes Gold metalization ovide high reliability and	CASE OUTLINE 55SU, STYLE 2 COMMON EMITTER
	Power Dissipation @ 25°C	200 Watts	~
BVces LVceo BVebo Ic Maximum Storage T	n Voltage and Current Collector to Emitter Voltage Collector to Emitter Voltage Emitter to Base Voltage Collector Current n Temperatures emperature Junction Temperature	55 Volts 27 Volts 3.5 Volts 20.0 Amps - 65 to + 150°C + 200°C	

ELECTRICAL CHARACTERISTICS @ 25 °C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Pout Pin Pg Rl η _c VSWR ₁	Power Out - PEP Power Input - PEP Power Gain Return Loss Collector Efficiency Load Mismatch Tolerance	F =1930 - 1990 MHz Vce = 25 Volts Icq = 400 mAmps As Above	60 7.3 42	8.0 44	11 -10 3:1	Watt Watt dB dB %

BVces BVceo BVebo Ices h _{FE} θjc	Collector to Emitter Breakdown Collector to Emitter Breakdown Emitter to Base Breakdown Collector Leakage Current DC - Current Gain Thermal Resistance	Ic = 100 mA Ic = 100 mA Ie = 25 mA Vce = 27 Volts Vce = 5 V, Ic = 1.5 A Tc = 25°C	55 27 3.5 20		30 100 .87	Volts Volts Wolts mA °C/W
---	---	--	-----------------------	--	------------------	---------------------------------------


Issue January 1997


GHZ TECHNOLOGY, INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHZ RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

Ghz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120

November 1996

GHZ TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHZ RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

GHz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120

ZONE	REV		DESCRIPTIC	REVISIONS	DATE	ROVED
	1.99			4.406	pf AT	55
<u>{</u>	2 NO. 1 2 3 4	X DIM .320 .930 .710 .635 .355	Y DIM .089 .115 .950 .950 .105			
	5 6 7 8	.175 .465 .330	.168 .105 .089			